Study with Ch'i YU
  • HOME
  • ABOUT
  • ARCHIVES
  • CATEGORIES
  • TAGS
  • LINKS
  • HOME
  • ABOUT
  • ARCHIVES
  • CATEGORIES
  • TAGS
  • LINKS
  • FURP Driven Insights: `Target Encoding`

    Topic: Adjusted Target Encoding for Multi-Class Classifications

    How category-encoders library gives incorrect results for multi-class categories.

    http://contrib.scikit-learn.org/category_encoders/targetencoder.html

     2022-08-05  
    • FURP 
     
    • Target Encoding 
    Read more 
  • FURP Driven Insights: `Focal Loss`

    Topic: Focal Loss for Multi-Class Classification

    Focal Loss: Designed to address the class imbalance by down-weighting the easy examples even if their number is large.

    https://doi.org/10.48550/arXiv.1708.02002

     2022-08-05  
    • FURP 
     
    • Focal Loss 
    Read more 
  • ML by Stanford: Wk5

    Take-Away Notes for Machine Learning by Stanford University on Coursera.

    Week 5, Lecture 9

     2022-07-04  
    • ML by Stanford 
     
    • Machine Learning 
    Read more 
  • ML by Stanford: Wk4

    Take-Away Notes for Machine Learning by Stanford University on Coursera.

    Week 4, Lecture 8

     2022-06-27  
    • ML by Stanford 
     
    • Machine Learning 
    • | TBC 
    Read more 
  • ML by Stanford: Wk3

    Take-Away Notes for Machine Learning by Stanford University on Coursera.

    Week 3, Lecture 6-7

     2022-06-26  
    • ML by Stanford 
     
    • Machine Learning 
    Read more 
  • ML by Stanford: Wk2

    Take-Away Notes for Machine Learning by Stanford University on Coursera.

    Week 2, Lecture 4-5

     2022-06-24  
    • ML by Stanford 
     
    • Machine Learning 
    Read more 
  • ML by Stanford: Wk1

    Take-Away Notes for Machine Learning by Stanford University on Coursera.

    Week 1, Lecture 1-3

     2022-06-17  
    • ML by Stanford 
     
    • Machine Learning 
    Read more 
  • FURP-Driven Literature Review V

    Osojnik, A., Panov, P. & Džeroski, S. Multi-label classification via multi-target regression on data streams. Mach Learn 106, 745–770 (2017). https://doi.org/10.1007/s10994-016-5613-5

    Driven by FURP(FoSE Undergraduate Research Placement) Programme.

     2022-06-08  
    • FURP 
    • > Literature Review 
     
    • Multi-Target Tracking 
    Read more 
  • FURP-Driven Literature Review IV

    Petković, M., Kocev, D. & Džeroski, S. Feature ranking for multi-target regression. Mach Learn 109, 1179–1204 (2020). https://doi.org/10.1007/s10994-019-05829-8cement) Programme.

     2022-06-08  
    • Literature Review 
    • > FURP 
     
    • Multi-Target Tracking 
    Read more 
  • FURP-Driven Literature Review III

    Waegeman, W., Dembczyński, K. & Hüllermeier, E. Multi-target prediction: a unifying view on problems and methods. Data Min Knowl Disc 33, 293–324 (2019). https://doi.org/10.1007/s10618-018-0595-5

    Driven by FURP(FoSE Undergraduate Research Placement) Programme.

     2022-06-07  
    • FURP 
    • > Literature Review 
     
    • Multi-Target Tracking 
    Read more 
Prev Next
© 2022 - 2023  Ch'i YU
Visitor Count   Totalview 
Powered by Hexo | Theme Keep v3.4.5